
NSuite

Mar 29, 2019

Contents

1 Getting Started 3

2 Funding 5

3 Contents 7
3.1 Installing NSuite . 7
3.2 Running NSuite . 12
3.3 Benchmarks . 17
3.4 Validation . 17
3.5 Simulation Engines . 19

i

ii

NSuite

NSuite is a framework for maintaining and running benchmarks and validation tests for multi-compartment neural
network simulations on HPC systems. NSuite automates the process of building simulation engines, and running
benchmarks and validation tests. NSuite is specifically designed to allow easy deployment on HPC systems in testing
workflows, such as benchmark-driven development or continuous integration.

There are three motivations for the development of NSuite:

1. The need for a definitive resource for comparing performance and correctness of simulation engines on HPC
systems.

2. The need to verify the performance and correctness of individual simulation engines as they change over time.

3. The need to test that changes to an HPC system do not cause performance or correctness regressions in simula-
tion engines.

The framework currently supports the simulation engines Arbor, NEURON, and CoreNeuron, while allowing other
simulation engines to be added.

Contents 1

NSuite

2 Contents

CHAPTER 1

Getting Started

NSuite implements a simple workflow with two stages using bash scripts:

1. Compile and install simulation engines.

2. Run and record results from benchmarks and validation tests.

Below is the simplest example of a workflow that compiles all simulation engines and runs benchmarks and validation
tests:

clone the NSuite framework from GitHub
git clone https://github.com/arbor-sim/nsuite.git
cd nsuite/

install Arbor, NEURON and CoreNeuron
./install-local.sh arbor neuron coreneuron

run the ring and kway benchmarks in small configuration for Arbor, NEURON and
→˓CoreNeuron
./run-bench.sh arbor neuron coreneuron --model="ring kway" --config=small

run all validation tests for Arbor and NEURON
./run-validation.sh arbor neuron

HPC systems come in many different configurations, and often require a little bit of “creativity” to install and run
software. Users of NSuite can customise the environment and how simulation engines are built and run by provid-
ing configuration scripts, which is covered along with details about the simulation engines in the simulation engine
documentation.

More information about running and writing new tests can be found in the benchmark and validation documentation
respectively.

3

NSuite

4 Chapter 1. Getting Started

CHAPTER 2

Funding

NSuite is developed as a joint collaboration between the Swiss National Supercomputing Center (CSCS), and
Forschungszentrum Jülich, as part of the Human Brain Project (HBP).

Development was fully funded by the European Union’s Horizon 2020 Framework Programme for Research and
Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

5

NSuite

6 Chapter 2. Funding

CHAPTER 3

Contents

3.1 Installing NSuite

The first stage of the NSuite workflow is to install the simulation engine(s) to benchmark or validate. This page
describes how to obtain NSuite and then perform this step so that benchmarks and validation tests can be run.

3.1.1 Obtaining NSuite

Before installing, first get a copy of NSuite. The simplest way to do this is to clone the repository using git:

git clone https://github.com/arbor-sim/nsuite.git
cd nsuite
git checkout v1.0

In the example above, git checkout v1.0 is used to pick a tagged version of NSuite. If omitted, the latest
development version in the master branch will be used.

3.1.2 Installing Simulation Engines

NSuite provides a script install-local.sh that performs the following operations:

• Obtain the source code for simulation engines.

• Compile and install the simulation engines.

• Compile and install benchmark and validation test drivers.

Basic usage of install-local.sh is best illustrated with some examples:

download and install Arbor
./install-local.sh arbor

download and install NEURON and CoreNEURON

(continues on next page)

7

NSuite

(continued from previous page)

./install-local.sh neuron coreneuron

download install all three of Arbor, NEURON and CoreNEURON
./install-local.sh all

download install NEURON in relative path install
./install-local.sh neuron --prefix=install

download install NEURON in relative path that includes time stamp
e.g. install-2019-03-22
./install-local.sh neuron --prefix=install-$(date +%F)

download install NEURON in absolute path
./install-local.sh neuron --prefix=/home/uname/install

The simulation engines to install are provided as arguments. Further options for installing the simulation engines in a
user-specified path and customising the build environment can be provided:

Flag De-
fault
value

Explanation

simu-
lator

none Which simulation engines to download and install. Any number of the following: {arbor,
neuron, coreneuron, all}.

--prefixcurrent
path

Path for downloading, compiling, installing simulation engines. Also used to store inputs and
outputs from benchmarks and validation tests. Can be either a relative or absolute path.

--env none Optional script for configuring the environment and build steps. See Directory Structure.

Directory Structure

The following directory structure will be generated when install-local.sh is run:

prefix
build

arbor
coreneuron
neuron
...

install
bin
include
lib
share

config
input

benchmarks
output

benchmarks
validation

cache

If no prefix is provided, the directory structure is created in the nsuite path. The contents of each sub-directory are
summarised:

8 Chapter 3. Contents

NSuite

build Source code for simulation engines is checked out, and compiled here.
installInstallation target for the simulation engine libraries, executables, headers, etc.
config The environment used to build each simulation engine is stored here, to load per-simulator when running

benchmarks and validation tests.
cache Validation data sets are stored here when generated during the installation phase.
input generated by running benchmarks Input files for benchmark runs in sub-directories for each bench-

mark configuration.
output generated by running benchmarks/validation Benchmark and validation outputs in sub-directories

for each benchmark/validation configuration.

Customizing the environment

NSuite attempts to detect features of the environment that will influence how simulation engines are compiled and run,
including compilers, MPI support and CPU core counts. HPC systems have multiple compilers, MPI implementations
and hardware resources available, which are typically configured using modules. It isn’t possible for NSuite to detect
which options to choose on such systems, so user can customise the compilation and execution of simulation engines.
To do this, a user provides an environment configuration script that will sourced after NSuite has performed automatic
environment detection and configuration.

The script is specified with the --env flag:

./install-local arbor --env=arbor-config.sh

./install-local neuron --env=neuron-config.sh

In the example above, different configurations are used for Arbor and NEURON. This can be used, for example,
to choose compilers that produce optimal results on each respective simulator, or when different simulators require
different versions of a library.

Examples of scripts for two HPC systems, Piz Daint and JUWELS, can be found in the scripts sub-directory in
NSuite.

General Variables

The following variables are universal to all of the simulation engines.

3.1. Installing NSuite 9

https://www.cscs.ch/computers/dismissed/piz-daint-piz-dora/
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_news.html

NSuite

Variable Default value Explanation
ns_cc mpicc if available,

else gcc/clang on
Linux/OS X

The C compiler for compiling simulation engines.

ns_cxx mpicxx if available,
else g++/clang++
on Linux/OS X

The C++ compiler for compiling simulation engines.

ns_with_mpiON iff MPI is detected ON/OFF to compile simulation engines with MPI enabled. Also controls
whether mpirun is used to launch benchmarks.

ns_makej 4 Number of parallel jobs to use when compiling.
ns_python which python3 The Python interpreter to use. Must be Python 3.
ns_threads_per_coreautomatic The number of threads per core for parallel benchmarks.
ns_cores_per_socketautomatic The number of cores per socket for parallel benchmarks.
ns_sockets1 The number of sockets for parallel benchmarks. One MPI rank is used per

socket if MPI support is enabled.
run_with_mpiBash function for

OpenMPI
A bash function for launching an executable and flags with multi-
threading and optionally MPI, based on the ns_threads_per_core,
ns_cores_per_socket, ns_sockets variables.

Simulator-Specific Variables

There are Arbor-specific options for checking out Arbor from a Git repository, and for configuring target-specific
optimizations.

Variable Default value Explanation
ns_arb_git_repohttps://github.

com/arbor-sim/
arbor.git

URL or directory for the Git repository to check out Arbor source
from.

ns_arb_branchv0.2 The branch/tag/SHA to check out. Master will be used if empty.
ns_arb_archnative The CPU architecture target for Arbor. Must be set when cross com-

piling. Default native targets the architecture used to configure
NSuite.

ns_arb_with_gpuOFF Whether to build Arbor with NVIDIA GPU support.
ns_arb_vectorizeON Whether to use explicit vectorization for Arbor.

The NEURON-specific options are for configuring where to get NEURON’s source from. NEURON can be down-
loaded from a tar ball for a specific version, or cloned from a Git repository.

The official versions of NEURON’s source code available to download are inconsistently packaged, so it is not possible
to automatically determine how to download and install from a version string alone, e.g. “7.6.2”. This is why three
variables must be set if downloading a NEURON tarball.

10 Chapter 3. Contents

https://arbor.readthedocs.io/en/latest/install.html#architecture

NSuite

Variable Default value Explanation
ns_nrn_tarballnrn-7.6.5.tar.gz The name of the tar ball file (caution: not

named consistently between versions).
ns_nrn_urlhttps://neuron.yale.edu/ftp/

neuron/ versions/v7.6/7.6.5/
${ns_nrn_tarball}

The URL of the tar ball (caution: not name
consistently between versions).

ns_nrn_pathnrn-7.6 The name of the path after expanding the tar
ball (caution: not name consistently between
versions).

ns_nrn_git_repoempty URL or path of Git repository. If set it will be
used instead of downloading a tarball.

ns_nrn_branchmaster Branch or commit SHA to use if sourcing from
Git.

CoreNEURON has more support than NEURON for targeting different hardware, either via automatic vectorization,
or using OpenACC for GPUs. However, it is quite difficult to build, particularly as part of an automated pipeline:
users have to directly provide architecture- and compiler-specific flags to CMake. As soon as we are able to build
CoreNEURON this way ourselves, we will add more flags for targeting different architectures.

Variable Default value Explanation
ns_cnrn_git_repohttps://github.com/BlueBrain/

CoreNeuron.git
URL or path of Git repository.

ns_cnrn_sha 0.14 Branch, tag or commit SHA of Git
repository.

Example custom environment

Below is a custom configuration script for a Cray cluster with Intel KNL processors. It configures all platform-specific
details that can’t be automatically detected by

• loading and swapping required modules;

• setting a platform-specific magic variable CRAYPE_LINK_TYPE required to make CMake play nice;

• configuring MPI with the Cray MPI wrapper;

• configuring Arbor to compile with KNL support;

• configuring the number of threads and MPI ranks with which to run benchmarks.

set up Cray Programming environment to use GNU toolchain
["$PE_ENV" = "CRAY"] && module swap PrgEnv-cray PrgEnv-gnu

load python, gcc version and CMake
module load cray-python/3.6.5.1
module swap gcc/7.3.0 # load after cray-python
module load CMake

set for CMake to correctly configure Arbor and CoreNEURON
export CRAYPE_LINK_TYPE=dynamic

Python, MPI and build options for this system
ns_python=$(which python3)
ns_cc=$(which cc)

(continues on next page)

3.1. Installing NSuite 11

NSuite

(continued from previous page)

ns_cxx=$(which CC)
ns_with_mpi=ON
ns_makej=20

simulator-specific options
ns_arb_arch=knl

cluster-specific options
ns_threads_per_core=1
ns_cores_per_socket=64
ns_sockets=1
ns_threads_per_socket=64

run_with_mpi() {
this system uses Slurm's srun to launch MPI jobs on compute nodes
srun -n $ns_sockets -c $ns_threads_per_socket $*

}

3.2 Running NSuite

The second stage of the NSuite workflow is running benchmark and validation tests on simulation engines that were
installed in the first stage when Installing NSuite.

Benchmarks and validation tests are launched with the respective scripts run-bench.sh and run-validation.
sh.

In the example workflow below, NEURON and CoreNEURON are first installed in a path called nrn using a user-
specified environment configuration neuron-config.sh, then benchmark and validation tests are run on the in-
stalled engines.

download and install NEURON and CoreNEURON in a directory called nrn
./install-local.sh neuron coreneuron --prefix=nrn --env=neuron-config.sh

run default benchmarks for NEURON and CoreNEURON
./run-bench.sh neuron coreneuron --prefix=nrn

run validation tests for NEURON
./run-validation.sh neuron --prefix=nrn

The benchmark and validation runners take as arguments the simulators to test, and the prefix where the simulation
engines were installed.

Note: The environment does not have to be specified by the user using the --env flag, because the environment
used to configure and build each simulation engine is saved during the installation with install-local.sh, and
automatically loaded for each simulation engine by the runners.

Flags and options for benchmark and validation runners are described in detail below.

3.2.1 Benchmarks

The full set of command line arguments for the benchmark runner run-bench.sh are:

12 Chapter 3. Contents

NSuite

Flag De-
fault
value

Explanation

--help Display help message.
simu-
lator

none Which simulation engines to benchmark. Any number of the following: {arbor, neuron,
coreneuron}.

--prefixcurrent
path

Path where simulation engines to benchmark were installed by install-local.sh. All
benchmark inputs and outputs will be saved here. Can be either a relative or absolute path.

--modelring A list of benchmark models to run. At least one of {ring, kway}.
--configsmall A list of configurations to run for each benchmark model. At least one of {small, medium,

large}.
--output'%m/

%p/
%s'

Override default path to benchmark outputs. The provided path name will be appended to
prefix. Use --help for all format string options.

The --model and --config flags specify which benchmarks to run and how they should be configured. Currently
there are two benchmark models, ring and kway; detailed descriptions are in Benchmarks.

run default benchmarks with Arbor
./run-bench.sh arbor

run ring and kway benchmarks with Arbor
./run-bench.sh arbor --model='ring kway'

run kway benchmark in medium and large configuration with Arbor
./run-bench.sh arbor --model=kway --config='medium large'

Each benchmark model has three configurations to choose from: small, medium and large. The configurations
can be used to test simulation engine performance at different scales. For example, the small configuration has fewer
cells with with simpler morphologies than the medium and large configurations. The small configuration requires little
time to run, and is useful for modelling performance characteristics of simpler models. Likewise, models in large
configuration take much longer to run, with considerably more parallel work for benchmarking performance of large
models on powerful HPC nodes.

Note: NEURON is used to generate input models for CoreNEURON. Before running a benchmark in CoreNEURON,
the benchmark must first be run in NEURON.

Benchmark output

Two forms of output are generated when a benchmark case is run. The first is a summary table printed to standard
output, and the second is a CSV file that can be saved for use by tools later analysis of benchmark output. In the
example below the kway model is run in the small configuration for Arbor and NEURON.

./run-bench.sh arbor neuron --model=kway --config=small --prefix=install
== platform: linux
== cores per socket: 4
== threads per core: 1
== threads: 4
== sockets: 1
== mpi: ON

== benchmark: arbor kway-small
(continues on next page)

3.2. Running NSuite 13

NSuite

(continued from previous page)

cells compartments wall(s) throughput mem-tot(MB) mem-percell(MB)
2 90 0.041 48.8 0.318 0.159
4 184 0.038 105.3 0.529 0.132
8 368 0.039 205.1 0.822 0.103

16 736 0.058 275.9 1.449 0.091
32 1462 0.106 301.9 2.642 0.083
64 2882 0.206 310.7 5.010 0.078

128 5778 0.406 315.3 9.517 0.074
256 11516 0.802 319.2 18.705 0.073

== benchmark: neuron kway-small
cells compartments wall(s) throughput mem-tot(MB) mem-percell(MB)

2 84 0.174 11.5 - -
4 172 0.179 22.4 - -
8 348 0.342 23.4 - -

16 688 0.711 22.5 - -
32 1384 1.380 23.2 - -
64 2792 3.600 17.8 - -

128 5596 14.049 9.1 - -
256 11188 33.246 7.7 - -

Benchmark output for each {simulator, model, config} tuple is stored in the output path prefix/output/
benchmarks/${output}. By default ${output} is, model/config/simulator, which can be overriden
by the --output flag. For the example above, two output files are generated, one for each simulator:

install/output/benchmark/kway/small/arbor/results.csv

cells, walltime, memory, ranks,threads, gpu
2, 0.041, 0.318, 1, 4, no
4, 0.038, 0.529, 1, 4, no
8, 0.039, 0.822, 1, 4, no

16, 0.058, 1.449, 1, 4, no
32, 0.106, 2.642, 1, 4, no
64, 0.206, 5.010, 1, 4, no
128, 0.406, 9.517, 1, 4, no
256, 0.802, 18.705, 1, 4, no

install/output/benchmark/kway/small/neuron/results.csv

cells, walltime, memory, ranks,threads, gpu
2, 0.174, , 1, 4, no
4, 0.179, , 1, 4, no
8, 0.342, , 1, 4, no

16, 0.711, , 1, 4, no
32, 1.380, , 1, 4, no
64, 3.600, , 1, 4, no
128, 14.049, , 1, 4, no
256, 33.246, , 1, 4, no

Descriptions and units for each column are tabulated below.

14 Chapter 3. Contents

NSuite

Column Units Explanation
cells • Total number of cells in the model.

walltime seconds Time taken to run the simulation.
Does not include model building or
teardown times.

memory megabytes Total memory allocated during
model building and simulation.
Measured as the difference in total
memory allocated between just
after MPI is initialized and the
simulation finishing.

ranks • The number of MPI ranks.

threads • Number of threads per MPI rank.

gpu • If a GPU was used. One of yes/no.

3.2.2 Validation Tests

Validation tests are composed of a model, corresponding to a physical system to be simulated, and a parameter set,
which specifies parameters within that system.

The run-validation.sh script runs all or a subset of the models for one or more installed simulators, saving test artefacts
in a configurable output directory and a presenting pass/fail status for each test on standard output.

Requirements

The existing validation scripts use functionality from the scipy and xarray Python modules. These modules need
to be available in the Python module search path.

Invocation

run-validation.sh [OPTIONS] SIMULATOR [SIMULATOR...]

SIMULATOR can be any of the simulators installed with install-local.sh. By default, run-validation.sh will use the
current directory as the installation and output base directory. If no models are explicitly selected with the --model
option (see below), all models and parameter sets will be run against each specified simulator.

Options are as follows:

3.2. Running NSuite 15

NSuite

Option Explanation
-h, --help Display help message and exit.
-l,
--list-models

List all available model/parameter sets.

--prefix=PREFIXBase directory for local installation and output directories. Validation tests may also create
reference datasets in PREFIX/cache.

-m,
--model=MODEL[/
PARAM]

A model or model/parameter set to run. MODEL alone is equivalent to MODEL/default.

-r, --refresh Regenerate any required cached reference data sets.
-o,
--output=FORMAT

Substitute fields in FORMAT and use the resulting absolute or relative path for the validation
test output directory. Relative paths are with respect to PREFIX/output/validation.

By default, the outputs for a validation test run are stored in PREFIX/output/validation/SIMULATOR/
MODEL/PARAM, corresponding to an output format of %s/%m/%p. Fields in the FORMAT string are substituted
as follows:

%T Timestamp of invocation of install-local.sh (ISO 8601/RFC 3339)
%H NSuite git commit hash (with + suffix if modified)
%h NSuite git commit short hash (with + suffix if modified)
%S System name (if defined in system environment script) or host name
%s Simulator name
%m Model name
%p Parameter set name
%% Literal ‘%’

Output

run-validation.sh will print pass/fail information to stdout, but will also record information in the per-test
output directories:

File Content
run.out Captured standard output from test script
run.err Captured standard error from test script
status Pass/fail status (see below)

The status is one of:

1. pass — validation test succeeded.

2. fail — validation test failed.

3. missing — no implementation for the validation test found for requested simulator.

4. error — an error occurred during validation test execution.

The output directory may contain other test artefacts. By convention only, these may include:

File Content
run.nc Numerical results from simulator run in NetCDF4 format.
delta.nc Computed differences from reference data.

16 Chapter 3. Contents

NSuite

3.3 Benchmarks

3.3.1 Architecture

Benchmarks are set up in the NSuite source tree according to a specific layout. Different benchmarks models can
share an underlying benchmark. For example, the ring and kway benchmarks are different configurations of what we
call a busy-ring model. In this case, the busy-ring is called a benchmark ENGINE and kway is a benchmark MODEL.
All scripts and inputs for ENGINE are in the path benchmarks/engines/ENGINE, and inputs for a MODEL are
in benchmarks/models/MODEL.

Every model MODEL must provide a configuration script benchmarks/models/MODEL/config.sh that takes
the following arguments:

config.sh $model \ # model name
$config \ # configuration name
$ns_base_path \ # the base path of nsuite
$ns_config_path \ # path to config directory
$ns_bench_input_path \ # path to benchmark input base directory
$ns_bench_output \ # path to benchmark output base directory
$output_format # format string for simulator+model+config

The script will in turn generate a benchmark runner for each simulation engine:

1. $ns_bench_input_path/$model/$config/run_arb.sh

2. $ns_bench_input_path/$model/$config/run_nrn.sh

3. $ns_bench_input_path/$model/$config/run_corenrn.sh

These scripts should generate benchmark output in the per-simulator path $ns_bench_output/
$output_format where the $output_format defaults to $model/$config/$engine.

Note: NSuite does not specify how the contents of benchmarks/engines/ENGINE have to be laid out.

Performance reporting

Each benchmark run has to report metrics such as simulation time, memory consumption, the number of cells in
model, and so on. These are output in the formats described in Benchmark output.

Arbor has a standardised way of measuring and reporting metrics using what it calls meters. NSuite provides a Python
module in common/python/metering.py that offers the same functionality in Python, which can be used for
the NEURON benchmarks.

With this standard output format, the scrpts/csv_bench.sh script can be used to automatically generate the
CSV output.

3.4 Validation

A validation test runs a particular model, representing some physical system to simulate, against one or more sets of
parameters and compares the output to a reference solution. If the output deviates from the reference by more than a
given threshold, the respective test is marked as failed for that simulator.

Simulator output for each model and parameter set is by convention stored in NetCDF format, where it can be analysed
with generic tools.

3.3. Benchmarks 17

NSuite

3.4.1 Architecture

Validation models are set up in the NSuite source tree according to a specific layout.

Data and scripts required to run a particular validation model MODEL will all be found under in the validation/
MODEL directory. At minimum, there must be an executable run script called run (see below) and a default parameter
set default.param. Any additional parameter sets must have a .param suffix.

The interpretation of a parameter set file is particular to any given model, but by convention, and for compatibility
with the existing run scripts, they should comprise a sequence of key=value assignments, one per line, with key
being a string without any whitespace and value a (possibly fractional) decimal number.

Model run scripts

A run script is invoked with the following arguments:

1. The output directory.

2. The simulator name.

3. The parameter set name.

The script should run the implementation of the model for the simulator, if it exists, with the parameters described in
the corresponding parameter set file.

The exit code determines the status of the test:

Exit code Interpretation
0 Success
96 Test failure
97 Missing implementation
other Execution error

Apart from cached reference data, any files created by the run script should be restricted to the output directory. As the
files run.out, run.err, and status in the output directory are written by the run-validation.sh script,
these files should not be written to by the run script itself.

Reference data generated by the run script can be stored in the output directory, or optionally in the NSuite cache
directory. The cache directory is defined in the environment variable ns_cache_path; data for a particular model
MODEL should be stored in a subdirectory of the cache directory also named MODEL.

If a validation run script does use cached data, that data should be regenerated if the environment variable
ns_cache_refresh has a non-empty value.

3.4.2 Building tests

In order to generate reference data or to construct a simulator implementation of particular model, there may be a
requirement to build some extra software at install time.

When install-local.sh is run, the directory validation/src is scanned for subdirectories containing a
CMakeLists.txt file. These are then built with CMake unless there is a file named BUILDFOR in the subdirectory.

The BUILDFOR file, if present, contains a whitespace-separated list of relevant simulators; the project will only be
built if the corresponding simulator has been installed in the invocation of install-local.sh.

18 Chapter 3. Contents

NSuite

3.4.3 Common tools

There is no requirement that validation tests use NetCDF as a format for simulator results and reference data, but there
are two tools provided in common/bin, viz. comparex and thresholdx that may simplify the creation of tests
that do use NetCDF representations.

The comparex program compares variables across two different NetCDF files, producing deltas, absolute errors, and
relative errors. It can optionally compare a variable against an interpolated reference variable and estimate a lower
bound on the absolute and relative errors via a computed estimate of the interpolation error.

The thresholdx program applies a sequence of simple predicates of the form variable op value to the data in a
NetCDF file, where op is one of =, <, >, <=, >=. It prints the predicate and a pass or fail message, and exits with a
non-zero value if any of the predicates failed.

3.5 Simulation Engines

A simulation engine is a library or application for simulating multi-compartment neural network models. NSuite
supports three simulation engines: Arbor, NEURON and CoreNEURON.

Table 1: Default versions of each supported simulation engine
Engine Version Kind Source
Arbor 0.2 git tag GitHub arbor-sim/arbor
NEURON 7.6.5 tar ball FTP neuron.yale.edu
CoreNEURON 0.14 git tag GitHub BlueBrain/CoreNeuron

Each benchmark and validation test is implemented for each engine that has the features required to run the test.

3.5.1 Required features

For a simulation engine to run at least one of the benchmark and validation tests, it must support the following features:

• [required] Support for compilation and running on Linux or OS X.

• [required] Support for arbitrary cell morphologies

• [required] Common ion channel types, specifically passive and Hodgkin-Huxely.

• [required] Support for user defined network connectivity.

• [required] Synapses with exponential decay, i.e. the expsyn and exp2syn synapse dynamics as defined in
NEURON.

• Output of voltage traces at user-defined locations and time points.

• Output of gid and times for spikes.

Note: If a simulation engine doesn’t support a feature required to run a test, the test will be skipped. For example,
the only simulation output provided by CoreNEURON is spike times, so validation tests that require other information
such as voltage traces are skipped when testing CoreNEURON.

NSuite does not describe models using universal model descriptions such as SONATA or NeuroML. Instead, bench-
mark and validation models are described using simulation engine-specific descriptions.

3.5. Simulation Engines 19

https://github.com/arbor-sim/arbor
https://neuron.yale.edu/ftp/neuron/versions/
https://github.com/BlueBrain/CoreNeuron
https://github.com/AllenInstitute/sonata
https://www.neuroml.org

NSuite

Arbor models

Models for Arbor are described using Arbor’s C++ API, and as such, they need to be compiled before they can be run.
Compilation of each model is performed during the installation phase, see Installing NSuite.

NEURON models

Models to run in NEURON are described using NEURON’s Python interface. The benchmarking and validation
runners launch the models using with the Python 3 interpreter specified by the ns_python variable (see General
Variables).

CoreNEURON models

NEURON is required to build models used as input for CoreNEURON. There are two possible workflows for this:

1. Build a model in NEURON, write it to file, then load and run the model using the stand-alone CoreNEURON
executable.

2. Build a model in NEURON, then run the model using CoreNEURON inside NEURON.

Benchmark models are run using the first approach, to minimise memory overheads and best reflect what we believe
will be the most efficient way to use CoreNEURON for HPC.

The second approach is used for validation tests, which run small models with low overheads, to simplify the validation
workflow by not requiring execution of separate NEURON and CoreNEURON scripts and applications for a single
model.

For more information about the different ways to run CoreNEURON, see the CoreNEURON documentation.

3.5.2 Adding a simulation engine

Support for a new simulation engine can be added using the steps described below. All of the steps are implemented
in bash scripts, and can be done by using the scripts for Arbor, NEURON and CoreNEURON as templates.

Write installation script

Write an installation script that is responsible for:

• Downloading/checking out the code;

• Compiling and installing the library/application;

• Compiling benchmark and validation code if required.

The following scripts can be used as templates.

• Arbor: scripts/build_arbor.sh

• NEURON: scripts/build_neuron.sh

• CoreNEURON: scripts/build_coreneuron.sh

20 Chapter 3. Contents

https://github.com/BlueBrain/CoreNeuron

NSuite

Add simulator-specific variables

Each simulation engine has unique options specific to that engine, for example:

• Arbor can specify which CPU architecture to target.

• Arbor can optionally be built with GPU support.

• NEURON requires parameters that describe how to download official release tar balls.

These options are configured using variables with prefixes of the form ns_{sim}_{feature}, for example
ns_arb_arch and ns_nrn_tarball. You can define variables as needed, and configure their default value,
in scripts/environment.sh, in the default_environment function.

Add engine to install-local.sh

The install-local.sh script has to be extended to support optional installation of the new simulation engine.
Follow the steps used by the existing simulation engines.

Note: If the simulation engine requires separate compilation of individual benchmark and validation models, follow
the example of how Arbor performs this step in scripts/build_arbor.sh.

Implement benchmarks and validation tests

See Benchmarks and Validation pages for details on how to add benchmark and validation tests.

3.5. Simulation Engines 21

https://github.com/arbor-sim/nsuite/blob/master/scripts/environment.sh#L22

	Getting Started
	Funding
	Contents
	Installing NSuite
	Running NSuite
	Benchmarks
	Validation
	Simulation Engines

