

NSuite

NSuite is a framework for maintaining and running benchmarks and validation tests
for multi-compartment neural network simulations on HPC systems.
NSuite automates the process of building simulation engines, and running benchmarks
and validation tests.
NSuite is specifically designed to allow easy deployment on HPC systems in
testing workflows, such as benchmark-driven development or continuous integration.

There are three motivations for the development of NSuite:

	The need for a definitive resource for comparing performance and correctness of
simulation engines on HPC systems.

	The need to verify the performance and correctness of individual simulation engines
as they change over time.

	The need to test that changes to an HPC system do not cause performance or
correctness regressions in simulation engines.

The framework currently supports the simulation engines Arbor, NEURON, and CoreNeuron,
while allowing other simulation engines to be added.

Getting Started

NSuite implements a simple workflow with two stages using bash scripts:

	Compile and install simulation engines.

	Run and record results from benchmarks and validation tests.

Below is the simplest example of a workflow that compiles all simulation engines
and runs benchmarks and validation tests:

clone the NSuite framework from GitHub
git clone https://github.com/arbor-sim/nsuite.git
cd nsuite/

install Arbor, NEURON and CoreNeuron
./install-local.sh arbor neuron coreneuron

run the ring and kway benchmarks in small configuration for Arbor, NEURON and CoreNeuron
./run-bench.sh arbor neuron coreneuron --model="ring kway" --config=small

run all validation tests for Arbor and NEURON
./run-validation.sh arbor neuron

HPC systems come in many different configurations, and often require a little bit
of “creativity” to install and run software.
Users of NSuite can customise the environment and how simulation engines are built
and run by providing configuration scripts, which is covered along with details
about the simulation engines in the simulation engine documentation.

More information about running and writing new tests can be found in the
benchmark and validation documentation respectively.

Funding

NSuite is developed as a joint collaboration between the Swiss National Supercomputing
Center (CSCS), and Forschungszentrum Jülich, as part of the Human Brain Project (HBP).

Development was fully funded by the European Union’s Horizon 2020
Framework Programme for Research and Innovation under the Specific Grant
Agreement No. 785907 (Human Brain Project SGA2).

Contents

Workflow

	Installing NSuite
	Obtaining NSuite

	Installing Simulation Engines
	Directory Structure

	Customizing the environment
	General Variables

	Simulator-Specific Variables

	Example custom environment

	Running NSuite
	Benchmarks
	Benchmark output

	Validation Tests
	Requirements

	Invocation

	Output

Features

	Benchmarks
	Architecture
	Performance reporting

	Validation
	Architecture
	Model run scripts

	Building tests

	Common tools

	NetCDF conventions

	Implementation notes

	Simulation Engines
	Required features
	Arbor models

	NEURON models

	CoreNEURON models

	Adding a simulation engine
	Write installation script

	Add simulator-specific variables

	Add engine to install-local.sh

	Implement benchmarks and validation tests

Installing NSuite

The first stage of the NSuite workflow is to install the simulation engine(s) to benchmark or validate.
This page describes how to obtain NSuite and then perform this step so that benchmarks and validation tests can be run.

Obtaining NSuite

Before installing, first get a copy of NSuite.
The simplest way to do this is to clone the repository using git:

git clone https://github.com/arbor-sim/nsuite.git
cd nsuite
git checkout v1.0

In the example above, git checkout v1.0 is used to pick a tagged version of NSuite.
If omitted, the latest development version in the master branch will be used.

Installing Simulation Engines

NSuite provides a script install-local.sh that performs the following operations:

	Obtain the source code for simulation engines.

	Compile and install the simulation engines.

	Compile and install benchmark and validation test drivers.

Basic usage of install-local.sh is best illustrated with some examples:

download and install Arbor
./install-local.sh arbor

download and install NEURON and CoreNEURON
./install-local.sh neuron coreneuron

download install all three of Arbor, NEURON and CoreNEURON
./install-local.sh all

download install NEURON in relative path install
./install-local.sh neuron --prefix=install

download install NEURON in relative path that includes time stamp
e.g. install-2019-03-22
./install-local.sh neuron --prefix=install-$(date +%F)

download install NEURON in absolute path
./install-local.sh neuron --prefix=/home/uname/install

The simulation engines to install are provided as arguments.
Further options for installing the simulation engines in a user-specified path and customising
the build environment can be provided:

	Flag

	Default value

	Explanation

	simulator

	none

	Which simulation engines to download and install.
Any number of the following: {arbor, neuron, coreneuron, all}.

	--prefix

	current path

	Path for downloading, compiling, installing simulation engines.
Also used to store inputs and outputs from benchmarks and validation tests.
Can be either a relative or absolute path.

	--env

	none

	Optional script for configuring the environment and build steps.
See Directory Structure.

Directory Structure

The following directory structure will be generated when install-local.sh is run:

prefix
├── build
│ ├── arbor
│ ├── coreneuron
│ ├── neuron
│ └── ...
├── install
│ ├── bin
│ ├── include
│ ├── lib
│ └── share
├── config
├── input
│ └── benchmarks
├── output
│ ├── benchmarks
│ └── validation
└── cache

If no prefix is provided, the directory structure is created in the nsuite path.
The contents of each sub-directory are summarised:

	build

	Source code for simulation engines is checked out, and compiled here.

	install

	Installation target for the simulation engine libraries, executables, headers, etc.

	config

	The environment used to build each simulation engine is stored here, to load per-simulator when running benchmarks and validation tests.

	cache

	Validation data sets are stored here when generated during the installation phase.

	input

	generated by running benchmarks Input files for benchmark runs in sub-directories for each benchmark configuration.

	output

	generated by running benchmarks/validation Benchmark and validation outputs in sub-directories for each benchmark/validation configuration.

Customizing the environment

NSuite attempts to detect features of the environment that will influence how simulation engines are
compiled and run, including compilers, MPI support and CPU core counts.
HPC systems have multiple compilers, MPI implementations and hardware resources available, which
are typically configured using modules.
It isn’t possible for NSuite to detect which options to choose on such systems, so
user can customise the compilation and execution of simulation engines.
To do this, a user provides an environment configuration script that will sourced
after NSuite has performed automatic environment detection and configuration.

The script is specified with the --env flag:

./install-local arbor --env=arbor-config.sh
./install-local neuron --env=neuron-config.sh

In the example above, different configurations are used for Arbor and NEURON.
This can be used, for example, to choose compilers that produce optimal
results on each respective simulator, or when different simulators require
different versions of a library.

Examples of scripts for two HPC systems,
Piz Daint [https://www.cscs.ch/computers/dismissed/piz-daint-piz-dora/] and JUWELS [http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_news.html],
can be found in the scripts sub-directory in NSuite.

General Variables

The following variables are universal to all of the simulation engines.

	Variable

	Default value

	Explanation

	ns_cc

	mpicc if available, else
gcc/clang on Linux/OS X

	The C compiler for compiling simulation engines.

	ns_cxx

	mpicxx if available, else
g++/clang++ on Linux/OS X

	The C++ compiler for compiling simulation engines.

	ns_with_mpi

	ON iff MPI is detected

	ON/OFF to compile simulation engines with MPI enabled.
Also controls whether mpirun is used to launch benchmarks.

	ns_makej

	4

	Number of parallel jobs to use when compiling.

	ns_python

	which python3

	The Python interpreter to use. Must be Python 3.

	ns_threads_per_core

	automatic

	The number of threads per core for parallel benchmarks.

	ns_cores_per_socket

	automatic

	The number of cores per socket for parallel benchmarks.

	ns_sockets

	1

	The number of sockets for parallel benchmarks. One MPI rank is used per socket if MPI support is enabled.

	run_with_mpi

	Bash function for OpenMPI

	A bash function for launching an executable and flags with multithreading and optionally MPI,
based on the ns_threads_per_core, ns_cores_per_socket, ns_sockets variables.

Simulator-Specific Variables

There are Arbor-specific options for checking out Arbor from a Git repository, and for configuring target-specific optimizations.

	Variable

	Default value

	Explanation

	ns_arb_git_repo

	https://github.com/arbor-sim/arbor.git

	URL or directory for the Git repository to check out Arbor source from.

	ns_arb_branch

	v0.5

	The branch/tag/SHA to check out. Master will be used if empty.

	ns_arb_arch

	native

	The CPU architecture target [https://arbor.readthedocs.io/en/latest/install.html#architecture]
for Arbor. Must be set when cross compiling.
Default native targets the architecture used to configure NSuite.

	ns_arb_gpu

	none

	Build Arbor with/without GPU support. Available options are none, cuda, clang, hip-clang

	ns_arb_vectorize

	ON

	Whether to use explicit vectorization for Arbor.

The NEURON-specific options are for configuring where to get NEURON’s source from.
NEURON can be downloaded from a tar ball for a specific version, or cloned from a Git repository.

The official versions of NEURON’s source code available to download are inconsistently packaged, so it
is not possible to automatically determine how to download and install from a version string alone, e.g. “7.6.2”.
This is why three variables must be set if downloading a NEURON tarball.

	Variable

	Default value

	Explanation

	ns_nrn_tarball

	nrn-7.6.5.tar.gz

	The name of the tar ball file (caution: not named consistently between versions).

	ns_nrn_url

	https://neuron.yale.edu/ftp/neuron/
versions/v7.6/7.6.5/${ns_nrn_tarball}

	The URL of the tar ball (caution: not name consistently between versions).

	ns_nrn_path

	nrn-7.6

	The name of the path after expanding the tar ball (caution: not name consistently between versions).

	ns_nrn_git_repo

	empty

	URL or path of Git repository. If set it will be used instead of downloading a tarball.

	ns_nrn_branch

	master

	Branch or commit SHA to use if sourcing from Git.

CoreNEURON has more support than NEURON for targeting different hardware, either via automatic vectorization, or using OpenACC for GPUs.
However, it is quite difficult to build, particularly as part of an automated pipeline: users have to directly provide architecture- and compiler-specific flags to CMake.
As soon as we are able to build CoreNEURON this way ourselves, we will add more flags for targeting different architectures.

	Variable

	Default value

	Explanation

	ns_cnrn_git_repo

	https://github.com/BlueBrain/CoreNeuron.git

	URL or path of Git repository.

	ns_cnrn_sha

	0.14

	Branch, tag or commit SHA of Git repository.

Example custom environment

Below is a custom configuration script for a Cray cluster with Intel KNL processors.
It configures all platform-specific details that can’t be automatically detected by

	loading and swapping required modules;

	setting a platform-specific magic variable CRAYPE_LINK_TYPE required to make CMake play nice;

	configuring MPI with the Cray MPI wrapper;

	configuring Arbor to compile with KNL support;

	configuring the number of threads and MPI ranks with which to run benchmarks.

set up Cray Programming environment to use GNU toolchain
["$PE_ENV" = "CRAY"] && module swap PrgEnv-cray PrgEnv-gnu

load python, gcc version and CMake
module load cray-python/3.6.5.1
module swap gcc/7.3.0 # load after cray-python
module load CMake

set for CMake to correctly configure Arbor and CoreNEURON
export CRAYPE_LINK_TYPE=dynamic

Python, MPI and build options for this system
ns_python=$(which python3)
ns_cc=$(which cc)
ns_cxx=$(which CC)
ns_with_mpi=ON
ns_makej=20

simulator-specific options
ns_arb_arch=knl

cluster-specific options
ns_threads_per_core=1
ns_cores_per_socket=64
ns_sockets=1
ns_threads_per_socket=64

run_with_mpi() {
 # this system uses Slurm's srun to launch MPI jobs on compute nodes
 srun -n $ns_sockets -c $ns_threads_per_socket $*
}

Running NSuite

The second stage of the NSuite workflow is running benchmark and validation tests on simulation engines that were installed in the first stage when Installing NSuite.

Benchmarks and validation tests are launched with the respective scripts run-bench.sh and run-validation.sh.

In the example workflow below, NEURON and CoreNEURON are first installed in a path called nrn using a user-specified environment configuration neuron-config.sh, then benchmark and validation tests are run on the installed engines.

download and install NEURON and CoreNEURON in a directory called nrn
./install-local.sh neuron coreneuron --prefix=nrn --env=neuron-config.sh

run default benchmarks for NEURON and CoreNEURON
./run-bench.sh neuron coreneuron --prefix=nrn

run validation tests for NEURON
./run-validation.sh neuron --prefix=nrn

The benchmark and validation runners take as arguments the simulators to test,
and the prefix where the simulation engines were installed.

Note

The environment does not have to be specified by the user using the
--env flag, because the environment used to configure and
build each simulation engine is saved during the installation with
install-local.sh, and automatically loaded for each simulation
engine by the runners.

Flags and options for benchmark and validation runners are described in detail below.

Benchmarks

The full set of command line arguments for the benchmark runner run-bench.sh are:

	Flag

	Default value

	Explanation

	--help

	
	Display help message.

	simulator

	none

	Which simulation engines to benchmark.
Any number of the following: {arbor, neuron, coreneuron}.

	--prefix

	current path

	Path where simulation engines to benchmark were installed by install-local.sh.
All benchmark inputs and outputs will be saved here.
Can be either a relative or absolute path.

	--model

	ring

	A list of benchmark models to run. At least one of {ring, kway}.

	--config

	small

	A list of configurations to run for each benchmark model.
At least one of {small, medium, large}.

	--output

	'%m/%p/%s'

	Override default path to benchmark outputs.
The provided path name will be appended to prefix.
Use --help for all format string options.

The --model and --config flags specify which benchmarks to run
and how they should be configured. Currently there are two benchmark models,
ring and kway; detailed descriptions are in Benchmarks.

run default benchmarks with Arbor
./run-bench.sh arbor

run ring and kway benchmarks with Arbor
./run-bench.sh arbor --model='ring kway'

run kway benchmark in medium and large configuration with Arbor
./run-bench.sh arbor --model=kway --config='medium large'

Each benchmark model has three configurations to choose from: small, medium and large.
The configurations can be used to test simulation engine performance at different scales.
For example, the small configuration has fewer cells with with simpler
morphologies than the medium and large configurations.
The small configuration requires little time to run, and is useful for modelling performance
characteristics of simpler models.
Likewise, models in large configuration take much longer to run, with considerably more parallel
work for benchmarking performance of large models on powerful HPC nodes.

Note

NEURON is used to generate input models for CoreNEURON. Before running a benchmark in
CoreNEURON, the benchmark must first be run in NEURON.

Benchmark output

Two forms of output are generated when a benchmark case is run.
The first is a summary table printed to standard output, and the second is a CSV
file that can be saved for use by tools later analysis of benchmark output.
In the example below the kway model is run in the small configuration for Arbor and NEURON.

./run-bench.sh arbor neuron --model=kway --config=small --prefix=install
== platform: linux
== cores per socket: 4
== threads per core: 1
== threads: 4
== sockets: 1
== mpi: ON

== benchmark: arbor kway-small
 cells compartments wall(s) throughput mem-tot(MB) mem-percell(MB)
 2 90 0.041 48.8 0.318 0.159
 4 184 0.038 105.3 0.529 0.132
 8 368 0.039 205.1 0.822 0.103
 16 736 0.058 275.9 1.449 0.091
 32 1462 0.106 301.9 2.642 0.083
 64 2882 0.206 310.7 5.010 0.078
 128 5778 0.406 315.3 9.517 0.074
 256 11516 0.802 319.2 18.705 0.073

== benchmark: neuron kway-small
 cells compartments wall(s) throughput mem-tot(MB) mem-percell(MB)
 2 84 0.174 11.5 - -
 4 172 0.179 22.4 - -
 8 348 0.342 23.4 - -
 16 688 0.711 22.5 - -
 32 1384 1.380 23.2 - -
 64 2792 3.600 17.8 - -
 128 5596 14.049 9.1 - -
 256 11188 33.246 7.7 - -

Benchmark output for each {simulator, model, config} tuple is stored in the output
path prefix/output/benchmarks/${output}. By default ${output} is,
model/config/simulator, which can be overriden by the --output flag.
For the example above, two output files are generated, one for each simulator:

install/output/benchmark/kway/small/arbor/results.csv

cells, walltime, memory, ranks,threads, gpu
 2, 0.041, 0.318, 1, 4, no
 4, 0.038, 0.529, 1, 4, no
 8, 0.039, 0.822, 1, 4, no
 16, 0.058, 1.449, 1, 4, no
 32, 0.106, 2.642, 1, 4, no
 64, 0.206, 5.010, 1, 4, no
 128, 0.406, 9.517, 1, 4, no
 256, 0.802, 18.705, 1, 4, no

install/output/benchmark/kway/small/neuron/results.csv

cells, walltime, memory, ranks,threads, gpu
 2, 0.174, , 1, 4, no
 4, 0.179, , 1, 4, no
 8, 0.342, , 1, 4, no
 16, 0.711, , 1, 4, no
 32, 1.380, , 1, 4, no
 64, 3.600, , 1, 4, no
 128, 14.049, , 1, 4, no
 256, 33.246, , 1, 4, no

Descriptions and units for each column are tabulated below.

	Column

	Units

	Explanation

	cells

	
	

	Total number of cells in the model.

	walltime

	seconds

	Time taken to run the simulation.
Does not include model building or teardown times.

	memory

	megabytes

	Total memory allocated during model building and simulation.
Measured as the difference in total memory allocated between
just after MPI is initialized and the simulation finishing.

	ranks

	
	

	The number of MPI ranks.

	threads

	
	

	Number of threads per MPI rank.

	gpu

	
	

	If a GPU was used. One of yes/no.

Validation Tests

Validation tests are composed of a model, corresponding to a physical system to
be simulated, and a parameter set, which specifies parameters within that system.

The run-validation.sh script runs all or a subset of the models for one or more
installed simulators, saving test artefacts in a configurable output directory
and a presenting pass/fail status for each test on standard output.

Requirements

The existing validation scripts use functionality from the scipy and
xarray Python modules. These modules need to be available in the
Python module search path.

Invocation

run-validation.sh [OPTIONS] SIMULATOR[:TAG ...] [SIMULATOR...]

SIMULATOR can be any of the simulators installed with install-local.sh.
By default, run-validation.sh will use the current directory as the
installation and output base directory. If no models are explicitly selected
with the --model option (see below), all models and parameter sets will
be run against each specified simulator.

SIMULATOR can optionally have a sequence of _tags_ appended, which
are keywords specific to simulator implementations of validation models
that change the global behaviour of that simulator. For any given simulator,
the set of supported tags may differ from model to model. See the README.md
file in each validation model directory for information regarding supported
tags.

Options are as follows:

	Option

	Explanation

	-h, --help

	Display help message and exit.

	-l, --list-models

	List all available model/parameter sets.

	--prefix=PREFIX

	Base directory for local installation and output directories.
Validation tests may also create reference datasets in
PREFIX/cache.

	-m, --model=MODEL[/PARAM]

	A model or model/parameter set to run. MODEL alone
is equivalent to MODEL/default.

	-r, --refresh

	Regenerate any required cached reference data sets.

	-o, --output=FORMAT

	Substitute fields in FORMAT and use the resulting
absolute or relative path for the validation test output
directory. Relative paths are with respect to
PREFIX/output/validation.

By default, the outputs for a validation test run are stored in
PREFIX/output/validation/SIMULATOR/MODEL/PARAM, corresponding to an output format
of %s/%m/%p. Fields in the FORMAT string are substituted as follows:

	%T

	Timestamp of invocation of install-local.sh (ISO 8601/RFC 3339)

	%H

	NSuite git commit hash (with + suffix if modified)

	%h

	NSuite git commit short hash (with + suffix if modified)

	%S

	System name (if defined in system environment script) or host name

	%s

	Simulator name (with tags, if any)

	%m

	Model name

	%p

	Parameter set name

	%%

	Literal ‘%’

Output

run-validation.sh will print pass/fail information to stdout, but will also
record information in the per-test output directories:

	File

	Content

	run.out

	Captured standard output from test script

	run.err

	Captured standard error from test script

	status

	Pass/fail status (see below)

The status is one of:

	pass — validation test succeeded.

	fail — validation test failed.

	missing — no implementation for the validation test found for requested simulator.

	error — an error occurred during validation test execution.

The output directory may contain other test artefacts. By convention only, these
may include:

	File

	Content

	run.nc

	Numerical results from simulator run in NetCDF4 format.

	delta.nc

	Computed differences from reference data.

Benchmarks

Architecture

Benchmarks are set up in the NSuite source tree according to a specific layout.
Different benchmarks models can share an underlying benchmark. For example,
the ring and kway benchmarks are different configurations of
what we call a busy-ring model. In this case, the busy-ring is called
a benchmark ENGINE and kway is a benchmark MODEL. All scripts
and inputs for ENGINE are in the path benchmarks/engines/ENGINE, and
inputs for a MODEL are in benchmarks/models/MODEL.

Every model MODEL must provide a configuration
script benchmarks/models/MODEL/config.sh that takes the following arguments:

config.sh $model \ # model name
 $config \ # configuration name
 $ns_base_path \ # the base path of nsuite
 $ns_config_path \ # path to config directory
 $ns_bench_input_path \ # path to benchmark input base directory
 $ns_bench_output \ # path to benchmark output base directory
 $output_format # format string for simulator+model+config

The script will in turn generate a benchmark runner for each simulation engine:

	$ns_bench_input_path/$model/$config/run_arb.sh

	$ns_bench_input_path/$model/$config/run_nrn.sh

	$ns_bench_input_path/$model/$config/run_corenrn.sh

These scripts should generate benchmark output in the per-simulator path
$ns_bench_output/$output_format where the $output_format defaults to $model/$config/$engine.

Note

NSuite does not specify how the contents of benchmarks/engines/ENGINE
have to be laid out.

Performance reporting

Each benchmark run has to report metrics such as simulation time, memory consumption, the number of cells in model, and so on.
These are output in the formats described in Benchmark output.

Arbor has a standardised way of measuring and reporting metrics using what it calls meters.
NSuite provides a Python module in common/python/metering.py that offers the
same functionality in Python, which can be used for the NEURON benchmarks.

With this standard output format, the scrpts/csv_bench.sh script can be used to automatically generate the CSV output.

Validation

A validation test runs a particular model, representing some physical system to
simulate, against one or more sets of parameters and compares the output to a
reference solution. If the output deviates from the reference by more than a
given threshold, the respective test is marked as failed for that simulator.

Simulator output for each model and parameter set is by convention stored in
NetCDF format, where it can be analysed with generic tools.

Architecture

Validation models are set up in the NSuite source tree according to a specific
layout.

Data and scripts required to run a particular validation model MODEL will all
be found under in the validation/MODEL directory. At minimum, there must be
an executable run script called run (see below) and a default parameter
set default.param. Any additional parameter sets must have a .param
suffix.

The interpretation of a parameter set file is particular to any given model,
but by convention, and for compatibility with the existing run scripts, they
should comprise a sequence of key=value assignments, one per line, with
key being a string without any whitespace and value a (possibly fractional)
decimal number.

Model run scripts

A run script is invoked with the following arguments:

	The output directory.

	The simulator name (with tags).

	The parameter set name.

The script should run the implementation of the model for the simulator,
if it exists, with the parameters described in the corresponding parameter
set file.

The simulator name may have one or more tag suffixes, of the form :tag —
these correspond to global flags applied to a simulator to modify its
behaviour. It is hoped that any supported tags for a simulator have the
same meaning across different models; neuron:firstorder, for example,
should be interpreted uniformly as asking NEURON to run with its first
order solver. This behaviour, however, is not enforced (see the
implementation notes below).

The exit code determines the status of the test:

	Exit code

	Interpretation

	0

	Success

	96

	Test failure

	97

	Missing implementation

	98

	Unsupported tag

	other

	Execution error

Apart from cached reference data, any files created by the run script should be
restricted to the output directory. As the files run.out, run.err, and
status in the output directory are written by the run-validation.sh
script, these files should not be written to by the run script itself.

Reference data generated by the run script can be stored in the output
directory, or optionally in the NSuite cache directory. The cache
directory is defined in the environment variable ns_cache_path;
data for a particular model MODEL should be stored in a subdirectory
of the cache directory also named MODEL.

If a validation run script does use cached data, that data should
be regenerated if the environment variable ns_cache_refresh
has a non-empty value.

Building tests

In order to generate reference data or to construct a simulator implementation
of particular model, there may be a requirement to build some extra software
at install time.

When install-local.sh is run, the directory validation/src is scanned
for subdirectories containing a CMakeLists.txt file. These are then
built with CMake unless there is a file named BUILDFOR in the subdirectory.

The BUILDFOR file, if present, contains a whitespace-separated list
of relevant simulators; the project will only be built if the corresponding
simulator has been installed in the invocation of install-local.sh.

Common tools

There is no requirement that validation tests use NetCDF as a format for
simulator results and reference data, but there are two tools provided
in common/bin, viz. comparex and thresholdx, that may simplify
the creation of tests that do use NetCDF representations.

The comparex program compares variables across two different NetCDF
files, producing deltas, absolute errors, and relative errors. It can
optionally compare a variable against an interpolated reference variable
and estimate a lower bound on the absolute and relative errors via a computed
estimate of the interpolation error.

The thresholdx program applies a sequence of simple predicates of
the form variable op value to the data in a NetCDF file, where
op is one of =, <, >, <=, >=. It prints the
predicate and a pass or fail message, and exits with a non-zero value
if any of the predicates failed.

NetCDF conventions

If NetCDF is used as the output representation for simulation results,
it is strongly recommended that the follow convention be followed:

	All key = value settings in a model paramset should be recorded
as scalar global attributes of type NC_DOUBLE.

	In addition, there should be global string attributes
simulator, simulator_build, and validation_model:

	simulator should be set to the name of the simulator followed
by any tags, separated by ‘:’ and in alphabetical order,
e.g. neuron:firstorder.

	simulator_build should contain version information for
the simulator used to produce the output, ideally with sufficient
detail to be able to recreate the simulator binary.

	validation_model should contain the name of the model,
but not include the name of the parameter set, e.g.
rallpack1, not rallpack1/default.

	Variables should have a units attribute describing the units
for the data in SI using standard abbreviations compatible with
UDUNITS and as much as feasible, other unit parsing libraries.

	If other metadata is provided, it should broadly follow common
NetCDF conventions such as those described by the
CF conventions [http://cfconventions.org].

Implementation notes

The existing run scripts use a helper script scripts/model_common.sh
to assist in marshalling parameters and invoking particular model
implementations; please refer to the comments in this script for
details. For a simulator SIM, the run scripts then look for an
implementation-specific script called run-SIM, which expects
command line arguments of the form:

run-SIM -o OUTPUT [--tag TAG]... [KEY=VALUE ...]

The simulator-specific run script is responsible for returning the
unsupported tag error code if it does not support a requested tag.

A python helper module nsuite.stdarg is intended to make parsing
these options more straightforward. Similarly, the C++ header
validation/src/include/common_args.h is used for the Arbor
model implementations.

As much as is feasible, it is recommended that model implementations
for a given simulator support the same set of tags. Tags used
in current implementations include:

	Arbor:

	binevents: bin event delivery times to simulation dt. Default
behaviour is to use precise event times, without any binning.

	NEURON and CoreNEURON:

	firstorder: use the first order, fixed time step integrator.
Default behaviour is to use the second order fixed time step integrator.

Simulation Engines

A simulation engine is a library or application for simulating multi-compartment
neural network models. NSuite supports three simulation engines: Arbor, NEURON and CoreNEURON.

Default versions of each supported simulation engine

	Engine

	Version

	Kind

	Source

	Arbor

	0.2

	git tag

	GitHub arbor-sim/arbor [https://github.com/arbor-sim/arbor]

	NEURON

	7.6.5

	tar ball

	FTP neuron.yale.edu [https://neuron.yale.edu/ftp/neuron/versions/]

	CoreNEURON

	0.14

	git tag

	GitHub BlueBrain/CoreNeuron [https://github.com/BlueBrain/CoreNeuron]

Each benchmark and validation test is implemented for each engine that has
the features required to run the test.

Required features

For a simulation engine to run at least one of the benchmark and validation tests,
it must support the following features:

	[required] Support for compilation and running on Linux or OS X.

	[required] Support for arbitrary cell morphologies

	[required] Common ion channel types, specifically passive and Hodgkin-Huxely.

	[required] Support for user defined network connectivity.

	[required] Synapses with exponential decay, i.e. the expsyn and exp2syn synapse dynamics as defined in NEURON.

	Output of voltage traces at user-defined locations and time points.

	Output of gid and times for spikes.

Note

If a simulation engine doesn’t support a feature required to run a test,
the test will be skipped. For example, the only simulation output
provided by CoreNEURON is spike times, so validation tests that require
other information such as voltage traces are skipped when testing CoreNEURON.

NSuite does not describe models using universal model descriptions such as
SONATA [https://github.com/AllenInstitute/sonata] or NeuroML [https://www.neuroml.org].
Instead, benchmark and validation models are described using simulation engine-specific descriptions.

Arbor models

Models for Arbor are described using Arbor’s C++ API, and as such,
they need to be compiled before they can be run.
Compilation of each model is performed during the installation phase, see Installing NSuite.

NEURON models

Models to run in NEURON are described using NEURON’s Python interface.
The benchmarking and validation runners launch the models using with the Python 3
interpreter specified by the ns_python variable (see General Variables).

CoreNEURON models

NEURON is required to build models used as input for CoreNEURON.
There are two possible workflows for this:

	Build a model in NEURON, write it to file, then load and run
the model using the stand-alone CoreNEURON executable.

	Build a model in NEURON, then run the model using CoreNEURON inside NEURON.

Benchmark models are run using the first approach, to minimise memory overheads and best
reflect what we believe will be the most efficient way to use CoreNEURON for HPC.

The second approach is used for validation tests, which run small models with low overheads,
to simplify the validation workflow by not requiring execution of separate NEURON and CoreNEURON
scripts and applications for a single model.

For more information about the different ways to run CoreNEURON, see the
CoreNEURON documentation [https://github.com/BlueBrain/CoreNeuron].

Adding a simulation engine

Support for a new simulation engine can be added using the steps described below.
All of the steps are implemented in bash scripts, and can be done by using the
scripts for Arbor, NEURON and CoreNEURON as templates.

Write installation script

Write an installation script that is responsible for:

	Downloading/checking out the code;

	Compiling and installing the library/application;

	Compiling benchmark and validation code if required.

The following scripts can be used as templates.

	Arbor: scripts/build_arbor.sh

	NEURON: scripts/build_neuron.sh

	CoreNEURON: scripts/build_coreneuron.sh

Add simulator-specific variables

Each simulation engine has unique options specific to that engine,
for example:

	Arbor can specify which CPU architecture to target.

	Arbor can optionally be built with GPU support.

	NEURON requires parameters that describe how to download official release tar balls.

These options are configured using variables with prefixes of the form
ns_{sim}_{feature}, for example ns_arb_arch and ns_nrn_tarball.
You can define variables as needed, and configure their default value,
in scripts/environment.sh, in the default_environment
function [https://github.com/arbor-sim/nsuite/blob/master/scripts/environment.sh#L22].

Add engine to install-local.sh

The install-local.sh script has to be extended to support optional
installation of the new simulation engine. Follow the steps used by the existing
simulation engines.

Note

If the simulation engine requires separate compilation of individual
benchmark and validation models, follow the example of how Arbor performs this
step in scripts/build_arbor.sh.

Implement benchmarks and validation tests

See Benchmarks and Validation pages for details on how to add benchmark
and validation tests.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 NSuite

 		
 Installing NSuite

 		
 Obtaining NSuite

 		
 Installing Simulation Engines

 		
 Directory Structure

 		
 Customizing the environment

 		
 Running NSuite

 		
 Benchmarks

 		
 Benchmark output

 		
 Validation Tests

 		
 Requirements

 		
 Invocation

 		
 Output

 		
 Benchmarks

 		
 Architecture

 		
 Performance reporting

 		
 Validation

 		
 Architecture

 		
 Model run scripts

 		
 Building tests

 		
 Common tools

 		
 NetCDF conventions

 		
 Implementation notes

 		
 Simulation Engines

 		
 Required features

 		
 Arbor models

 		
 NEURON models

 		
 CoreNEURON models

 		
 Adding a simulation engine

 		
 Write installation script

 		
 Add simulator-specific variables

 		
 Add engine to install-local.sh

 		
 Implement benchmarks and validation tests

_static/down-pressed.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/comment-bright.png

